A SHORT AND STEREOSPECIFIC SYNTHESIS OF (+)-DEOXOARTEMISININ AND (-)-DEOXODESOXYARTEMISININ

Mankil Jung, *1,2 Xun Li, 3 Daniel A. Bustos¹, Hala N. ElSohly¹, and James D. McChesney, ^{1,3}

¹Research Institute of Pharmaceutical Sciences, ²Department of Medicinal Chemistry, and ³Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, MS 38677

Summary: The synthesis of (+)-deoxoartemisinin and (-)-deoxodesoxyartemisinin was achieved either from artemisinic acid or from artemisinin.

Artemisinin (Qinghaosu, 1)¹, isolated² from <u>Artemisia</u> <u>annua</u> L., has recently received much attention due to its novel structure and clinically useful antimalarial activity against chloroquine-resistant malaria³. Total syntheses of artemisinin have been reported^{4,5,6}. In continuation of our efforts⁷ to find urgently needed new antimalarial agents,^{6,8} deoxoartemisinin 2 was prepared for evaluation since it is devoid of the carbonyl function at C-12, while retaining the biologically active endoperoxide. Derivatives of artemisinin lacking the carbonyl function were projected to possess increased stability and thus longer half-life in the body. This note reports a successful synthesis of (+)-deoxoartemisinin and (-)-deoxodesoxyartemisinin 3, a potential metabolite of deoxoartemisinin.

(+)-Deoxoartemisinin was first prepared from artemisinic acid, 4, in three steps (Scheme 1). Stereoselective reduction of methyl artemisinate, 5, gave dihydroalcohol⁴, 6, 81% as crystals after chromatography. Chiral photoxidation (oxygen, methylene blue and irradiation in CH₂Cl₂,-78° for 2 hr) of 6, followed by <u>in situ</u> treatment of the isolable intermediate 8 with Dowex-resin (strongly acidic) afforded (+)-deoxoartemisinin 2 (18%) in one step and of natural configuration. 2^9 : m.p. 104-105° (petroleum ether), $[\alpha]_D^{18} = + 86.25°$ (C 0.4, CHCl₃). This conversion proves to be a short and stereospecific synthesis of (+)-deoxoartemisinin from naturally more abundant artemisinic acid.

We also evaluated direct conversions of artemisinin, 1, into deoxoartemisinin 2. Direct hydrogenolysis of the carbonyl function of 1 was achieved in 71% yield by a slight excess of sodium borohydride in the presence of boron trifluoride etherate in dry tetrahydrofuran (1 hr at 0° , then heat to reflux). The biologically important endo peroxide is left intact under these reductive conditions.

Key : (a) CH_2N_2 , Et_2O , r.t. (b) $LiAIH_4$, $NiCl_2.6H_2O$, CH_3OH , r.t. 3h (c) ${}^{1}O_2$, methylene blue, CH_2Cl_2 , -78°, 2h (d) Dowex-resin (strongly acidic), hexane, r.t. 4h (e) $NaBH_4$, $BF_3.Et_2O$, THF, 0°, 1h then reflux (f) H_2 , 5% Pd/CaCO₃, EtOH, r.t. 1h then p-TsOH, toluene (g) O₃, CH_2Cl_2 , -78°, 2.5h, p-TsOH, r.t. 2h (h) m-CPBA, CHCl₃, 0°, 2h

Scheme 1

(-)-Deoxodesoxyartemisinin¹⁰, 3, a potential metabolite of deoxoartemisinin 2 was synthesized either from artemisinin ${f 1}$ in two steps (overall yield 70%) or from artemisinic acid 4 in four steps (overall yield 22%) (Scheme 1). Thus, further hydrogenation of 2 with 5% Pd/CaCO.. and subsequent in situ treatment with P-TsOH/toluene afforded the deoxodesoxyartemisinin 3, (yield 98%) 3^{11} :m.p. 97-99° (CH₃CN), $[\alpha]_{D}^{18} = -50.25°$ (C 0.4, $CHCl_3$). Alternatively, ozonolysis of 6 and in situ acid catalyzed cyclization afforded the oily enolether 7^{12,13} in 47% after chromatography and final epoxidative cyclization [m-CPBA (3eq), CHCl₃, 0°, 2h] of 7 also afforded 3 cleanly and of natural configuration (93%).

2 and 3 from artemisinin 1 are identical by comparison of mmp, specific rotation, and spectral properties with 2 and 3 from artemisinic acid 4 respectively. Thus, all chiral centers of 1 and 4 were retained in their natural configuration during these manipulations.

(+)-Deoxoartemisinin 2 is found to show approximately eight times the antimalarial activity of artemisinin <u>in vitro</u> against chloroquine-resistant malaria.

In conclusion, (+)-deoxoartemisinin, 2, a new and more active antimalarial agent, and (-)-deoxodesoxyartemisinin 3, a potential metabolite of 2 were synthesized either from artemisinic acid or from artemisinin.

Acknowledgements

The financial support of the Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi is gratefully acknowledged. We thank Dr. Wilbur K. Milhous for <u>in vitro</u> antimalarial tests.

References

- For comprehensive review, see

 a) D.L. Klayman, <u>Science</u> (1985), 228, 1049.
 b) X.D. Luo and C.C. Shen, <u>Med. Res. Rev.</u> (1987), 7, 29
- 2. Cooperative Research Group on Qinghaosu, Yaoxue Tongbao (1979) 14, 49.
- 3. Qinghaosu Antimalaria Coordinating Research Group, Chin. Med. J. (1979),92.
- X. Xu, J. Zhu, D. Huang and W. Zhou, a) <u>Acta</u>. <u>Chim</u>. <u>Sin</u>. (1983), **41**, 574, b) <u>Tetrahedron</u> (1986), **42**, 818.
- 5. G. Schmid, W. Hofheinz, J. Am. Chem. Soc. (1983), 105, 624.
- 6. M.A. Avery, C. Jennings White, and W.K.M. Chong, Tet. Lett. (1987), 28, 4629.
- 7. M. Jung, H.N. ElSohly, E.M. Croom, A.T. McPhail, and D.R. McPhail, <u>J. Org. Chem</u>. (1986) **51**, 5417.
- (a) China Cooperative Research Group on Qinghaosu, <u>J. Trad. Chin. Med.</u> (1982), **2**, 9. (b)
 W.S. Zhou, <u>Pure & Appl. Chem</u>. (1986), **58**, 817. (c) A. J. Lin, D.L. Klayman, and
 W.K.Milhous, <u>J. Med. Chem</u>. (1987), **30**, 2147. (d) Y. Imakura, T. Yokoi, T. Yamagishi, J.
 Koyama, H.Hu, D.R. McPhail, A.T. McPhail and K.H. Lee, <u>J.C.S. Chem</u>. (1988), 372
- 9. Compound 2: H¹-NMR (CDCl₃, 300 MHz); 5.19 (s,1H, 5-CH), 3.72(dd, J=4.2, 11.7Hz, 1H, 12-

CH), 3.44(t, J=11.7 Hz, 1H, 12-CH), 2.64 (m, 1H, 11-CH), 2.37 (2dd, J=4.2, 1.2Hz, 1H, 7-CH), 1.43(s,3H, 15-CH₃), 0.96(d,J=6.3 Hz, CH₃), 0.77(d, J=7.2 Hz, CH₃). IR (KBr); 2950, 2860, 1500, 1340, 1060, 875 Cm⁻¹ MS (70eV): m/e 268 (M+), 250 (M+ - H₂O), 236 (M+- O_2), 178, 164, 137. Anal. Calcd. for $C_{15}H_{24}O_4$: C, 67.16; H, 8.96; O, 23.88. Found: C, 67.34; H, 9.17; O, 23.58. For the mechanism for conversion of **6** to **2** see reference 7.

 7-Epi-deoxodesoxyartemisinin was previously synthesized in nine steps (overall yield, about 5%) from artemisinin: See W.S. Zhou, J.M. Shen, C.H. Cheng, and Z.H. Wu, <u>Scientia</u> Sinica(B), (1984), 150.

- 11. Compound 3: H'-NMR(CDCl₃,300 MHz): 5.25 (s,1H, 5-CH), 3.94 (dd, J=6.6, 12.3 Hz, 1H, 12-CH), 3.28 (dd, J=4.5, 12.1Hz, 1H, 12-CH), 2.27 (m, 1H, 11-CH), 1.53 (s, 3H, 15-CH₃), 0.92 (d, J=7.5 Hz, CH₃), 0.89 (d, J=6.0 Hz, CH₃). IR (KBr): 2920, 1500, 1380, 1109, 991, 880 cm⁻¹. MS (70eV); m/e 252 (M+), 237, 191, 181, 164, 149, 106. Anal. Calcd. for $C_{15}H_{24}O_{3}$; C, 71.42; H, 9.52; O, 19.06. Found; C, 70.82; H, 9.47; O, 19.71
- 12. Compound 7: H¹-NMR (CDCl₃): 6.16 and 6.09 (2bs, 1H, olefinic H), 3.60 (m,2H, OCH₂), 2.54 (m, 2H, CH₂CO), 2.12 (s, 3H, CH₃CO), 0.96 (d, J=6Hz, 3H, CH₃), 0.89 (d, J=7.0 Hz, CH₃). IR (neat); 2910, 1705 (C=0), 1645, 1450, 1150, 750 cm⁻¹. MS (70eV); m/e 236 (M+).
- 13. Treatment of 7 with triphenylphosphite-ozone adduct (PhO)₃P, 0₃, -78° to -23°, CH₂Cl₂) gave (+)-deoxoartemisinin, 2, in low yield (4%) and attempted photooxidation of 7 (oxygen, light and photosensitizer) afforded only deoxodesoxyartemisinin 3 (23% yield) but no deoxoartemisinin 2.

(Received in USA 25 May 1989; accepted 30 August 1989)